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Abstract— Calibration is often an important and necessary
step in the use of image-guided systems. In the case of the
AX = Y B problem, the relative hand-eye (X) and robot-
world (Y ) transformations must be determined to provide
accurate data for use in control. As an added difficulty, the
exact correspondence between the streams of sensor data (A’s
and B’s) is typically unknown due to asynchrony in sampling
rates and processing time. One common scenario is a constant
shift between the two data streams. Therefore, in this paper
we present a probabilistic method to simultaneously solve for
X and Y without a priori knowledge of the correspondence
between the streams of A’s and B’s. We begin by discussing
probability density functions on SE(3) and then use Euclidean-
group invariants to obtain an exact solution for X and Y . We
then present a method to simultaneously recover X and Y and
the correspondence between temporally shifted data sets using
a correlation method. Following this, we show how to solve the
problem in the case when the data are completely scrambled,
corresponding to a complete loss of temporal information.
Finally, we numerically simulated the proposed method with
asynchronous data and noise added to the stream of B’s to
verify its efficiency and robustness.

I. INTRODUCTION

Image-guided systems have been widely employed in ap-

plications throughout robotics such as robot-assisted surgery,

autonomously guided vehicles, etc. Sensors such as a camera,

a laser scanner, or an ultrasound probe are usually mounted

on the distal end of a robotic manipulator. For a typical

“hand-eye” system as described above, the relative transfor-

mation between the sensor with respect to the end-effector

should be accurately calibrated, and it is often characterized

as the well-known AX = XB problem. A variation of

this problem is the AX = Y B problem, where both the

hand-eye transformation and the pose of the robot base with

respect to the world frame need to be calibrated. In a typical

environment, the relationships between the sensor frame,

robot frame, and world frame are variant and uncertainties

exist. Therefore, simultaneous coordinate calibrations have

to be determined frequently in order to enable the robot to

respond to dynamic environments.

In the AX = Y B problem, data streams of A’s and

B’s can be respectively obtained via different sensors. The

data streams may arrive in an asynchronous fashion due
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Fig. 1. (1) The hand-eye and robot-world calibration problem formulated
as AX=YB. (2) The hand-eye calibration problem formulated as AX=XB.
Note: matrices A and B above have different physical meanings in the
AX = XB and AX = Y B problems. (The Universal Robot pictured
above is from the laboratory of Prof. Emad Boctor of Johns Hopkins
University).

to the different working frequencies of the sensors. This

asynchrony causes a shift between the two data streams

which can obscure the correspondence between the A’s

and B’s. Moreover, data loss can destroy information about

correspondence altogether. In this paper, a novel method is

presented to solve for X and Y without a priori knowledge

of the correspondence between the A’s and B’s.

The hand-eye calibration problem can be modelled as

AX = XB, where A and B are the homogeneous transfor-

mation matrices describing the relative motions of the end-

effector and the sensor respectively. As shown in Fig. 1 part

(2), A = Ai(Ai+1)−1 and B = (Bi)−1Bi+1. Given multiple

pairs of (Ai, Bi) with correspondence (note that (Ai, Bi)



are the relative transformations obtained from the raw data),

many deterministic methods have been proposed to solve for

X . To the best of the authors’ knowledge, Shiu [1] and Tsai

[2] are the first to solve the AX = XB sensor calibration

problem. The other methods include but are not limited to the

quaternion, dual quaternion, screw theory, Lie group theory,

motor algebra, convex optimization and gradient descent

methods [3]–[11]. All of the methods above assume a priori

knowledge of the exact correspondence between Ai and Bi.

For data streams {Ai} and {Bj} that are asynchronous,

several methods have been proposed in the literature to

solve for X using data without a priori knowledge of the

correspondence. These methods assume that there are some

corresponding pairs of data in the streams of the {Ai} and

{Bj}; however, the exact correspondence is unknown a priori

[12], [13].

Simultaneous estimation of the hand-eye and robot-world

transformations has been viewed as the AX = Y B problem.

As shown in Fig. 1 part (1), Y is the transformation from

the robot base to the world frame, A denotes the pose of the

sensor in the world frame and B is the transformation from

the end-effector to its fixed base. The A and B in AX = Y B

are different from those in AX = XB where the former uses

absolute transformations and the latter uses relative transfor-

mations. This problem has been solved by many different

methods such as the Kronecker product, quaternion, dual

quaternion, and nonlinear optimization methods [14]–[21].

Simulatneous calibration of X and Y can be problematic

in that all the methods above assume exact correspondence

between {Ai} and {Bj}, which is not the case in the real

world, and this is why a simultaneous solution for X and

Y in the AX = Y B problem can be a challenging issue.

Another similar problem involves the calibration of multiple

robots in terms of hand-eye, tool-flange, and robot-robot

transformations, and it is formulated as the AXB = Y CZ

problem [22] which will not be discussed in detail here. In

the above methods, the correspondence between A and B is

known a priori. In this paper, we focus on one case of the

AX = Y B problem where there is no a priori knowledge

of the correspondence between the data streams.

The rest of the paper is organized as follows. In Section II,

a novel probabilistic method is presented to solve for eight

candidates of X and Y . In Section III, an algorithm involving

both a temporal correlation calculation and Euclidean group

invariants is proposed to recover the correspondence between

{Ai} and {Bj}, which is used to select the optimal solution

among the candidates. The simulation results obtained by

taking noisy data without correspondence are illustrated in

Section IV. In Section V, we briefly discuss the case where

one can obtain (X,Y ) without recovering the correspon-

dence between the data sets. Finally, conclusions are drawn

based on the numerical results and possible future work is

pointed out.

II. SOLVING AX=YB USING A PROBABILISTIC METHOD

ON MOTION GROUPS

In this section, a brief introduction to the concept of

probability density functions (PDFs) on the special Euclidean

group SE(3) is presented and the probabilistic representation

of AX = Y B is derived.

Any rigid body transformation matrix can be viewed as a

group element of SE(3) :

H(R, t) =

(
R t

0T 1

)
∈ SE(3), R ∈ SO(3) (1)

where SO(3) denotes the special orthogonal group, t ∈ R3

is a translational vector, T denotes the transpose of a vector

or matrix, and H is the symbol for an element of SE(3)
(which is a six-dimensional Lie group) represented as a 4×4
homogeneous transformation matrix. The identity element of

SE(3) is then the 4× 4 identity matrix, I4.

Given a large set of pairs (Ai, Bi) ∈ SE(3) × SE(3)
where i = 1, · · · , n, the following equation is true if the

correspondence is known as a priori:

AiX = Y Bi. (2)

For a group element H ∈ SE(3), a Dirac delta function

δ(H) is defined to be finite only at the identity and zero

elsewhere,

δ(H) =

{
+∞ if H = I4
0 if H ̸= I4,

(3)

and also satisfies the identity constraint

∫

SE(3)

δ(H)dH = 1. (4)

A shifted Dirac delta function can be defined as δA(H) =
δ(A−1H). Given K,H ∈ SE(3) and two well-behaved

functions f1 and f2, their convolution on SE(3) is defined

as [23], [24]

(f1 ∗ f2)(H) =

∫

SE(3)

f1(K)f2(K
−1 ◦H)dK (5)

where ◦ denotes the group product for SE(3), which is

simply matrix multiplication. The integral over SE(3) can

be expressed in various coordinates, and both the bounds

of the integral and the integration measure dH will take on

different appearances that depend on these coordinates. For

example, if H is parameterized in terms of the Cartesian

coordinates t = [x, y, z]T , and R = RZXZ(α, β, γ) is an

Euler-angle description of rotations, then the integral over

SE(3) is the six-dimensional integral where x, y, z range

over −∞ to +∞, α, γ range from 0 to 2π and β ranges

from 0 to π. In these coordinates, the integration measure

takes the form

dH = sinβdαdβdγdxdydz = dRdt.



Alternatively, exponential coordinates can be used, in which

case the six-dimensional integral over SE(3) and the mea-

sure take the form described in [25].

When it is clear that the argument of a function is H ∈
SE(3), sometimes it will be convenient to abbreviate f(H)
as f and (f1 ∗ f2)(H) as f1 ∗ f2 to avoid a proliferation of

parentheses.

The convolution operation is bi-linear in the sense that

(a1f1 + b1f
′

1) ∗ f2 = a1(f1 ∗ f2) + b1(f
′

1 ∗ f2)

and

f1 ∗ (a1f2 + b1f
′

2) = a1(f1 ∗ f2) + b1(f1 ∗ f
′

2).

Moreover, convolution inherits associativity from the under-

lying group:

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3.

But convolution is generally not commutative, f1 ∗ f2 ̸=
f2 ∗ f1.

Employing the properties of the δ function, it is straight-

forward to see that:

(f ∗ δ)(H) =

∫

SE(3)

f(K)δ(K−1 ◦H)dK = f(H). (6)

Therefore, for each Ai and Bi, the following equations can

be obtained:

(δAi
∗ δX)(H) = δ(A−1

i HX−1) (7a)

(δY ∗ δBi
)(H) = δ(Y −1HB−1

i ). (7b)

Using Eq. (2) and Eq. (3), the above two equations can be

combined into a single equation as:

(δAi
∗ δX)(H) = (δY ∗ δBi

)(H). (8)

Defining the PDF of {Ai} and {Bi} as:

fA(H) =
1

n

n∑

i=1

δAi
(H) (9a)

fB(H) =
1

n

n∑

i=1

δBi
(H), (9b)

then by using the bi-linearity of convolution, add n instances

of Eq. (8), and substitute Eq. (9) into the summation, and

we will have:

(fA ∗ δX)(H) = (δY ∗ fB)(H). (10)

The convolution of two highly-focused PDFs have some

interesting properties that can be used to solve for X . In

particular, the mean M and covariance Σ of a PDF f(H)
on SE(3) are defined as:

∫

SE(3)

log(M−1H)f(H)dH = O4 (11a)

Σ =

∫

SE(3)

log∨(M−1H)[log∨(M−1H)]T f(H)dH (11b)

where the explicit expression of the matrix logarithm log(H)
along with its vectorized form log∨(H) are given in [26] as

log(H) = ĥ =




0 −h3 h2 h4

h3 0 −h1 h5

−h2 −h1 0 h6

0 0 0 0


 (12)

where h = log∨(H) ∈ R6×1 and ĥ is the corresponding Lie

algebra element, ĥ ∈ se(3), such that H = exp ĥ.

If fA(H) is given as in Eq. (9), then the corresponding

discrete version of the mean MA and covariance ΣA will be:

n∑

i=1

log(M−1
A Ai) = O4 (13a)

Σ =

n∑

i=1

log∨(M−1
A Ai)[log

∨(M−1
A Ai)]

T . (13b)

Given {Ai} with the cloud of frames Ai clustering around

MA, an iterative formula can be used for computing MA [25]

as:

k+1MA =k MA ◦ exp

[
1

n

n∑

i=1

log(kM−1
A ◦Ai)

]
. (14)

An initial estimate of the iterative procedure can be chosen

as:

0MA = exp

(
1

n

n∑

i=1

log(Ai)

)
.

Alternatively, MA can be obtained by solving a nonlinear

optimization problem with the cost function

C1(MA) =

∥∥∥∥∥

n∑

i=1

log(M−1
A Ai)

∥∥∥∥∥

2

.

Note, however, that mathematically this is not the same as

minimizing

C2(MA) =
n∑

i=1

∥∥log(M−1
A Ai)

∥∥2 ,

though in practice they often are minimized by very close

values of MA.

A similar procedure can be used to compute MB . ΣA and

ΣB are then straightforward to compute once MA and MB

are known.

The mean and covariance for the convolution (f1 ∗ f2)(g)
of two “highly-focused” functions f1 and f2 (i.e., those for

which ∥Σi∥ << 1) are calculated as in [25]:

M1∗2 = M1M2 (15a)

Σ1∗2 = Ad(M−1
2 )Σ1AdT (M−1

2 ) + Σ2, (15b)

where

Ad(H) =

(
R O4

t̂R R

)
.



Here the “hat” notation when applied to the three-

dimensional vector t gives

t̂ =




0 −t3 t2
t3 0 −t1
−t2 −t1 0


 (16)

Because X and Y are constant, their corresponding PDF

will be δX(g) and δY (g), of which the mean and covariance

are MX = X , ΣX = O6 and MY = Y , ΣY = O6, respec-

tively. Therefore, the following equations can be obtained

using Eq. (15):

MAX = YMB (17a)

Ad(X−1)ΣAAd
T (X−1) = ΣB . (17b)

This is a nonparametric result, meaning that the underlying

probability density functions fA(H) and fB(H) need not

be Gaussian or belong to any other family of parametric

distributions. Moreover, it can be shown as below that in the

context of AX = Y B, Eq. (17a) and Eq. (17b) don’t require

fA and fB to be highly concentrated.

Starting with Eq.(10), performing a convolution on both

of the left sides of the equation with δY −1(H), and using

the associativity of convolution, we will have:

(δY −1 ∗ fA ∗ δX)(H) = fB(H). (18)

Use the definition of mean as in Eq. (11) along with Eq. (18),

we have ∫

SE(3)

log(M−1
B H)fB(H)dH =

∫

SE(3)

log(M−1
B H)(δX−1 ∗ fA ∗ δX)(H)dH =

∫

SE(3)

log(M−1
B H)fA(Y HX−1)dH = O4. (19)

Change the variable as K = Y HX−1 and use the invariance

of integration [23], then Eq. (19) becomes:
∫

SE(3)

log(M−1
B Y −1KX)fA(K)dK = O4. (20)

which falls into the form of the mean definition of {Ai}.

If we further multiply X and X−1 on the left and right of

both sides of Eq. (20), then X[log(M−1
B Y −1KX)]X−1 =

log(M−1
A K). Knowing that X[log(M−1

B Y −1KX)]X−1 =
log(XM−1

B Y −1K), and we have XM−1
B Y −1 = M−1

A

which is equivalent to Eq. (17a). Eq.(17b) follows from [25]

because the F (A,B) term as defined in [25] has products

of covariances of the functions being convolved, and delta

functions have zero covariance so the F (A,B) term is zero,

which results in Eq. (17b).

The problem of solving the above equations, Eq. (17a)

is decomposed into a rotational equation and a translational

equation as follows:

RMA
RX = RY RMB

(21a)

RMA
tX + tMA

= RY tMB
+ tY . (21b)

ΣA and ΣB can be decomposed into blocks as(
Σ1

A Σ2
A

Σ3
A Σ4

A

)
and

(
Σ1

B Σ2
B

Σ3
B Σ4

B

)
, respectively. Knowing

that X−1 =

(
RT

X −RT
XtX

0 1

)
, then the first two blocks

of Eq. (17b) can be written as follows:

Σ1
MB

= RT
XΣ1

MA
RX (22a)

Σ2
MB

= RT
XΣ1

MA
RX(R̂T

XtX) +RT
XΣ2

MA
RX . (22b)

Because Eq. (22a) is a similarity transformation between

Σ1
MB

and Σ1
MA

, they share the same eigenvalues and can

be eigendecomposed into Σ1
MA

= QMA
ΛQT

MA
and Σ1

MB
=

QMB
ΛQT

MB
where Λ is a diagonal matrix whose diagonal

elements are the eigenvalues of Σ1
MA

(or Σ1
MB

), and QMA

(or QMB
) is a square matrix whose columns are the corre-

sponding eigenvectors. The following equation is obtained

after substituting Σ1
MB

and Σ1
MA

into Eq. (22a):

Λ = (QT
MA

RT
XQMB

)Λ(QT
MB

RXQMA
) = PΛPT (23)

where P = QT
MA

RXQMB
. Since QMA

and QMB
are further

constrained to be rotation matrices, the orthogonal matrix P

satisfies Eq. (24).

{
PT = P−1

det(P ) = ±1.
(24)

Combing Eq. (23) and Eq. (24), then an orthogonal matrix

P can be one of P or −P :

P =








1 0 0
0 1 0
0 0 1


 ,




−1 0 0
0 −1 0
0 0 1


 ,




−1 0 0
0 1 0
0 0 −1


 ,




1 0 0
0 −1 0
0 0 −1





 .

(25)

Therefore, there are eight candidates for RX which can be

calculated via RX = QMA
PQT

MB
, and the corresponding tX

can be obtained from Eq. (22b). Given known X , Y can be

solved from Y = MAXM−1
B . At last, eight candidate pairs

of {Xk, Yk} can be obtained as:

Xk =

(
RXk

tXk

0T 1

)
, Yk =

(
RYk

tYk

0T 1

)
(26)

where k = 1, 2, ..., 8.

The problem then becomes selecting the best pair of

{Xk, Yk} from the eight candidates. Based on screw theory,

it is known that a homogeneous transformation H can be

expressed by the four screw parameters (θ, d,n,p) as:

H =

(
eθn̂ (I3 − eθn̂)p+ dn

0T 1

)
(27)

where θ is the angle of rotation, d is the translation along

the rotation axis, n is the unit vector representing the axis of



rotation and p is the position of a point on the line relative

to the origin of a space-fixed reference frame with p ·n = 0.

Moreover, AXk = YkB can be written as AXk =
Xk(X

−1
k YkB). Defining Bk = X−1

k YkB, we have AXk =
XkB

k. As discussed in [27], [28], for AX = XB problem,

there exist two Euclidean-group invariant relationships for

each pair of (Ai, B
k
i )(i = 1, · · · , n; k = 1, . . . , 8) as follows:

θAi
= θBk

i
, dAi

= dBk
i
. (28)

Among the eight pairs (Xk, Yk), one can find an optimal

solution which minimizes the cost function defined as:

(X,Y ) = argmin
(Xk,Yk)

1

n

n∑

i=1

(∥ θAi
− θBk

i
∥ + ∥ dAi

− dBk
i
∥).

(29)

Eight candidates of (Xk, Yk) are calculated using the prob-

abilistic method on SE(3), which doesn’t require the corre-

spondence between Ai and Bj to be known. However, the

correspondences need to be recovered to pick the optimal

(Xk, Yk). Note that the Euclidean-group invariant relation-

ships in the context of AX = Y B problem are still unknown.

Therefore, AX = Y B is converted into AX = XB problem

to recover the correspondence of data using invariants.

III. SOLUTION WITH UNKNOWN CORRESPONDENCE

BETWEEN Ai AND Bk
j

In most cases, the two sets of homogeneous transfor-

mations {Ai} and {Bj} are calculated based on the data

obtained from different sensors. Due to the asynchronous

timing of the sensor readings, the correspondence between

{Ai} and {Bj} is usually unknown. This section deals with

the case where there is a shift between {Ai} and {Bj},

and the Euclidean-group invariants are used to recover the

correspondence between the data streams. The advantage of

the above probabilistic solution lies in that X and Y can be

calculated even if there is no a priori knowledge of the corre-

spondence. However, there are still eight possible candidates

of (Xk, Yk) to choose from and by using Euclidean-group

invariants, it is straightforward to determine which is the

optimal pair if the correspondence between Ai and Bk
j can

be known.

The Discrete Fourier Transform (DFT) decomposes a

time-domain signal into its constituent frequencies. The input

is a finite list of equally spaced samples of a function. Given

a discrete signal consisting of a sequence of N complex

numbers x0, x1, · · · , xN−1, the DFT is denoted by Xκ =
F(xn) as:

Xκ =

N−1∑

n=0

xn · exp(−i
2π

N
nκ). (30)

where i here is the imaginary unit.

The Inverse Discrete Fourier Transform (IDFT) is denoted

as:

xn =
1

N

N−1∑

n=0

Xκ · exp(i
2π

N
nκ). (31)

The discrete convolution of two sequences fn and gn is

defined as:

(f ∗ g)(τ) =
N∑

j=0

f(tj)g(tj − τ). (32)

In the convolution theorem, the Fourier transform of a

convolution is the product of the Fourier transforms, namely:

f ∗ g = F−1[F(f) · F(g)]. (33)

The correlation theorem indicates that the correlation

function, Corr(f, g), will be larger for a shift vector where

the two sequences fn and gn share more similar features.

The correlation can be obtained based on the convolution

theorem. The DFT of Corr(f, g) is equal to the product of

the DFT of fn and the complex conjugate F∗ of the DFT

of gn:

Corr(f, g) = f ⋆ g = F−1[F(f) · F∗(g)]. (34)

Compared to the standard time-domain convolution algo-

rithm, the complexity of the convolution by multiplication in

the frequency domain is significantly reduced with the help

of the convolution theorem and the Fast Fourier Transform

(FFT).

Given two sequences {θAi
} and {θBk

j
} corresponding to

{Ai} and {Bk
j }, the shift that is needed to recover the data

correspondence is obtained as below. Firstly, θAi and θBk
j

are normalized as:

θ1,k =
(θAi

− µA)

σA

, θ2,k =
(θBk

j
− µBk)

σBk

(35)

where µA(µBk) is the mean of θAi
(θBk

i
) and σA(σBk) is

the standard deviation.

Here, the correlation function Corr(θ1,k, θ2,k) is the func-

tion of the time sequence index n which describes the

probability of these two sequences being separated by this

particular index. The index corresponding to the maximum of

Corr(θ1,k, θ2,k) indicates the amount of shift τshift between

{θAi
} and {θBk

j
}.

τshift = argmax
index

(Corr(θ1,k, θ2,k)) (36)

Therefore, the correspondence between the two sequences

can be found. The data of θAi
or dAi

are shifted by −τshift
to obtain a sequence of new pairs (θAi

(i+ τshift), θBk
i
)

and (dAi
(i+ τshift), dBk

i
), where max(0, τshift) ≤ i ≤

min(n, n+ τshift). The data stream can be shifted back to

regain correspondence to synchronize the data streams once

the shift is computed, and the optimal solution of X and

Y can also be recovered by minimizing the cost function in

Eq. (29) using the Euclidean-group invariants as shown in

Section II.
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IV. SIMULATION STUDIES

For the numerical experiments in this section, the rota-

tional and translational errors for X and Y are measured

as

Error(RX) =∥ log∨(RT
XSolved

RXtrue
) ∥,

Error(tX) =∥ tXSolved
− tXtrue

∥,

Error(RY ) =∥ log∨(RT
YSolved

RYtrue
) ∥,

and

Error(tY ) =∥ tYSolved
− tYtrue

∥,

respectively.

There are multiple ways of generating the data streams

{Ai} and {Bi}. One way is to first generate {Bi} and then

map it to {Ai} using A = Y BX−1. {Bi} can be obtained

by randomly sampling on the Lie algebra of B from a zero

mean multivariate Gaussian distribution as follows:
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Fig. 5. Orientation and translation errors of X and Y versus shift using
Li’s and Shah’s methods without correspondence.

δi ∈ N (0; Σ) ⊂ R
6 (37a)

Bi = exp(δ̂i)exp(µ) (37b)

where the mean µ = 0 ∈ se(3) and the covariance matrix

Σ ∈ R6×6 is a diagonal matrix with same diagonal elements

σ. The hat operator δ̂ converts a 6 by 1 vector into its

corresponding Lie algebra. The data stream {Ai} can be

easily obtained as described above. After employing the pro-

posed probabilistic method, 8 sets of sequences (θAi
, θBk

i
)

and (dAi
, dBk

i
) can be obtained respectively where i =

1, · · · , 100 and k = 1, . . . , 8.

If the data stream {Ai} is shifted by m units relative

to {Bi}, then the maximum of the cross correlation can

be used to recover the shift. After that, we can shift the

data stream {Ai} back to its original position to recover the

correct correspondence with {Bi}, which will be used to find

a correct solution satisfying the Euclidean-group invariants

as defined in Eq. (28). Therefore, a unique pair of (Xk, Yk)
(k = 1, · · · , 8) can be selected to minimize the cost function.

In Fig. 2, because the shift between {Ai} and {Bi} is

calculated accurately, the translational and rotational errors

fluctuate by only a small amount compared to the errors of

the no-shift data streams.

To test the robustness of the proposed method, noise is

added to {Bi} as Bnoise
i = Biexp(x̂noise), where each

element of the Lie Algebra xnoise belongs to the Gaussian

distribution defined as N ∼ (µnoise, σnoise). In Fig. 3, as

the covariance noise σnoise increments from 0.01 to 0.08,

the errors of RX , RY , tX , and tY increase as shown in the

box-and-whisker plot. There are several outliers outside the

whiskers, while the median is calculated as the final solved X

and Y . Fig. 4 shows the solved (X ,Y )s in red and blue with

the actual (X ,Y ) in black with covariance noise of σ = 0.05
and shift n = 2.

The probabilistic method can recover the correspondence

between shifted data streams, which is useful for other sensor

calibration methods. In the AX = Y B problem, there have

been many calibration methods developed for solving X

and Y given data streams with correspondence. However,

few of them considered the cases without correspondence.

When data streams of A and B are shifted or asynchronous,

most of these methods fail to give a valid solution. To
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Fig. 6. Orientation and translation errors of X and Y versus shift using
Li’s and Shah’s methods with correspondence.

further test the effectiveness of our method, we shift the data

sequence of {Ai} by n = 0, 1, 2, 3, 4, 5 with respect to the

data sequence of {Bi} such that Ak+n “matches” Bk where

k = 1, 2, · · · ,m − n and i = 1, 2, · · · ,m. We augment

other AX = Y B solvers with our probabilistic approach

by recovering the correspondence between shift data sets. In

Li’s method [19], X and Y are solved for at the same time,

while Shah [20] solved for X and Y in a separate way. As

shown in Fig. 5, when dealing with the shifted data streams

{Ak+n, Bk}, the errors on both rotations and translations

are significant. After recovering the correspondence between

data streams by using the probabilistic method, Li and Shah’s

methods achieve the same level of performance as shown in

Fig. 6.

V. A BRIEF CASE STUDY WITH COMPLETELY

SCRAMBLED DATA

In this section, we will briefly discuss the case where

{Ai} and {Bj} are completely scrambled. Unlike the case

of shifted data, it is extremely hard to recover the cor-

respondence between two completely scrambled data sets

{Ai} and {Bj}. The correlation theorem can’t be applied

because there is no shift in the scrambled data sets. Euclidean

group invariants are not practical either because given {Ai}
and {Bj} both of which have the size of m, there are

m! = m × m − 1 × · · · 1 combinations between the data

sets, and it is extremely computationally intensive to test

all the combinations. Without recovering the correspondence

between the data sets, it is impossible to choose the optimal

solution from the eight candidates of {Xk, Yk}.

In the above approach, we used Eq. (17b) to calculate Xk

and Eq. (17a) to obtain the corresponding Yk. However, we

now show that one can calculate the eight candidates of Y

independently and employ Eq. (17a) as a constraint to filter

out the optimal {X,Y } pair. Given the equation AX = Y B,

apply an inverse on both sides of the equation and we will

have B−1Y −1 = X−1A−1. Following the same derivations

from Eq. (6) to Eq. (17b), we have:

MB−1Y −1 = X−1MA−1 (38a)

Ad(Y )ΣB−1AdT (Y ) = ΣA−1 . (38b)
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Fig. 7. Rotation error in X and Y v.s. scrambling rate for the prob and
Li’s methods

Similarly, Eq. (38b) can give eight candidates of Y −1, or

equivalently, the eight candidates of Y . Let Xk1 where

k1 = 1, 2, · · · , 8 denote the Xs obtained from Eq. (17b)

and Yk2 where k2 = 1, 2, · · · , 8 denote the Y s obtained

from Eq. (38b), and we can use Eq. (17a) and Eq. (38a) to

form a minimization problem as:

min
k1,k2

||MAXk1 − Yk2MB ||F + ||M−1
B Y −1

k2 −X−1
k1 M

−1
A ||F

(39)

which can give the optimal (Xk1, Yk2) pair. We call this

approach the prob method, and compare it with Li’s method

for testing its effectiveness of handling scrambled data sets.

For simplicity, we use Eq. (38a) and Eq. (38b) to generate

{Bi}, whereas compute {Ai} using Ai = X−1Y Bi without

exerting noise on Bi. Then {Ai} is scrambled at each

percentage from 0% up to 100%. 50 times of simulations

are performed for each percentage rate and the same error

metrics are used as in Section V. As shown in Fig. (7) and

Fig. (8), as the percentage of scrambled data goes up, the

errors in rotation and translation for Li’s method gradually

diverge, while the errors for the prob method are very

stable and small. This shows the significant advantage of

the probabilistic method in handling disordered data sets.

However, Li’s method is still more accurate when the exact

correspondence is known between {Ai} and {Bi}.

VI. CONCLUSIONS

In this paper, we developed a probabilistic approach

to simultaneously obtain X and Y in the AX = Y B

sensor calibration problem. Without a priori knowledge of

the correspondence between {Ai} and {Bj}, the proposed

probabilistic method on Lie groups is used to constrain the

possible solutions of X and Y to eight pairs of candidates.

Given shifted data streams of {Ai+s} and {Bi}, using

the correlation theorem with Euclidean-group invariants, the

correspondence is recovered to determine the correct solution

among the eight candidates. In the numerical simulation,
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the method performs well with different sets of data sam-

ples. Lastly, we brought up a new approach to deal with

completely disordered data sets and show its effectiveness

in simulation.Future work will be to improve the prob

method and investigate on its performance dealing with noisy

scrambled data sets.
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